Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells ; 40(3): 239-259, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35323987

RESUMO

Metabolism plays a crucial role for cell survival and function; however, recent evidence has implicated it in regulating embryonic development. In the embryo, the inner cell mass undergoes orchestrated cellular divisions resulting in the formation of pluripotent epiblast stem cells and primitive endoderm cells. However, both lineages can be captured in vitro as embryonic stem (ES) cells and extraembryonic endoderm (XEN) cells. Concomitantly, changes in the metabolic profile occurs during development, and are well documented in the embryonic lineages. However, a comprehensive multi-omic analysis of these features in XEN cells remains lacking. We observed that mouse XEN cells exhibited high sensitivity to glycolytic inhibition in addition to maintaining elevated intra- and extracellular lactate levels in vitro. Extraembryonic endoderm cells maintain high lactate levels by increased LDHA activity, and re-routing pyruvate away from the mitochondria resulting in reduced mitochondrial activity due to disruptions in electron transport chain stoichiometry. Importantly, exogenous lactate supplementation or promoting intracellular lactate accumulation enhances XEN differentiation in vitro. These results highlight how lactate contributes to XEN differentiation in vitro and may serve to enhance reprogramming efficiency of cells used for regenerative medicine.


Assuntos
Endoderma , Ácido Láctico , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Ácido Láctico/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas
2.
Acta Neuropathol Commun ; 9(1): 60, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823944

RESUMO

We have previously reported long-term changes in the brains of non-concussed varsity rugby players using magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI) and functional magnetic imaging (fMRI). Others have reported cognitive deficits in contact sport athletes that have not met the diagnostic criteria for concussion. These results suggest that repetitive mild traumatic brain injuries (rmTBIs) that are not severe enough to meet the diagnostic threshold for concussion, produce long-term consequences. We sought to characterize the neuroimaging, cognitive, pathological and metabolomic changes in a mouse model of rmTBI. Using a closed-skull model of mTBI that when scaled to human leads to rotational and linear accelerations far below what has been reported for sports concussion athletes, we found that 5 daily mTBIs triggered two temporally distinct types of pathological changes. First, during the first days and weeks after injury, the rmTBI produced diffuse axonal injury, a transient inflammatory response and changes in diffusion tensor imaging (DTI) that resolved with time. Second, the rmTBI led to pathological changes that were evident months after the injury including: changes in magnetic resonance spectroscopy (MRS), altered levels of synaptic proteins, behavioural deficits in attention and spatial memory, accumulations of pathologically phosphorylated tau, altered blood metabolomic profiles and white matter ultrastructural abnormalities. These results indicate that exceedingly mild rmTBI, in mice, triggers processes with pathological consequences observable months after the initial injury.


Assuntos
Concussão Encefálica/patologia , Concussão Encefálica/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Animais , Comportamento Animal , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
J Dev Orig Health Dis ; 12(6): 915-922, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33353580

RESUMO

Although abundant evidence exists that adverse events during pregnancy lead to chronic conditions, there is limited information on the impact of acute insults such as sepsis. This study tested the hypothesis that impaired fetal development leads to altered organ responses to a septic insult in both male and female adult offspring. Fetal growth restricted (FGR) rats were generated using a maternal protein-restricted diet. Male and female FGR and control diet rats were housed until 150-160 d of age when they were exposed either a saline (control) or a fecal slurry intraperitoneal (Sepsis) injection. After 6 h, livers and lungs were analyzed for inflammation and, additionally, the amounts and function of pulmonary surfactant were measured. The results showed increases in the steady-state mRNA levels of inflammatory cytokines in the liver in response to the septic insult in both males and females; these responses were not different between FGR and control diet groups. In the lungs, cytokines were not detectable in any of the experimental groups. A significant decrease in the relative amount of surfactant was observed in male FGR offspring, but this was not observed in control males or in female animals. Overall, it is concluded that FGR induced by maternal protein restriction does not impact liver and lung inflammatory response to sepsis in either male or female adult rats. An altered septic response in male FGR offspring with respect to surfactant may imply a contribution to lung dysfunction.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Sepse/fisiopatologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta com Restrição de Proteínas/métodos , Modelos Animais de Doenças , Quebeque , Ratos , Ratos Wistar , Sepse/dietoterapia
4.
PLoS One ; 14(4): e0215611, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31002676

RESUMO

Limited information is available on how fetal growth retardation (FGR) affects the lung in the neonatal period in males and females. This led us to test the hypothesis that FGR alters lung mechanics and the surfactant system during the neonatal period. To test this hypothesis a model of FGR was utilized in which pregnant rat dams were fed a low protein diet during both the gestation and lactation period. We subsequently analyzed lung mechanics using a FlexiVent ventilator in male and female pups at postnatal day 7 and 21. Lung lavage material was obtained at postnatal day 1, 7 and 21, and was used for analysis of the surfactant system which included measurement of the pool size of surfactant and its subfraction as well as the surface tension reducing ability of the surfactant. The main result of the study was a significantly lower lung compliance and higher tissue elastance which was observed in FGR female offspring at day 21 compared to control offspring. In addition, female LP offspring exhibited lower surfactant pool sizes at postnatal day 1compared to controls. These changes were not observed in the male offspring. It is concluded that FGR has a different impact on pulmonary function and on surfactant in female, as compared to male, offspring.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Dieta com Restrição de Proteínas/efeitos adversos , Retardo do Crescimento Fetal/fisiopatologia , Surfactantes Pulmonares/metabolismo , Mecânica Respiratória/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Retardo do Crescimento Fetal/etiologia , Lactação , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Gravidez , Ratos Wistar , Fatores Sexuais
5.
Am J Physiol Lung Cell Mol Physiol ; 313(3): L524-L533, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28546153

RESUMO

Alterations to the pulmonary surfactant system have been observed consistently in ventilation-induced lung injury (VILI) including composition changes and impairments in the surface tension reducing ability of the isolated extracellular surfactant. However, there is limited information about the effects of VILI on the intracellular form of surfactant, the lamellar body. It is hypothesized that VILI leads to alterations of lamellar body numbers and function. To test this hypothesis, rats were randomized to one of three groups, nonventilated controls, control ventilation, and high tidal volume ventilation (VILI). Following physiological assessment to confirm lung injury, isolated lamellar bodies were tested for surfactant function on a constrained sessile drop surfactometer. A separate cohort of animals was used to fix the lungs followed by examination of lamellar body numbers and morphology using transmission electron microscopy. The results showed an impaired ability of reducing surface tension for the lamellar bodies isolated from the VILI group as compared with the two other groups. The morphological assessment revealed that the number, and the relative area covered by, lamellar bodies were significantly decreased in animals with VILI animals as compared with the other groups. It is concluded that VILI causes significant alterations to lamellar bodies. It is speculated that increased secretion causes a depletion of lamellar bodies that cannot be compensated by de novo synthesis of surfactant in these injured lungs.


Assuntos
Lisossomos/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/ultraestrutura , Animais , Colesterol/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Masculino , Oxigênio/metabolismo , Fosfolipídeos/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Surfactantes Pulmonares/farmacologia , Ratos Sprague-Dawley , Tensão Superficial/efeitos dos fármacos , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...